Project: Serbia Railway Sector Modernization Project (SRSM)

<u>Clarifications no. 1 to the Request for Quotations: Supply of Tracking and Monitoring Devices</u> <u>for Electro and Diesel Locomotives, Reference No. SER-SRSM-RFQ-G-24-62</u>

Dear All,

With respect to the Request for Quotations: Supply of Tracking and Monitoring Devices for Electro and Diesel Locomotives, Reference No. SER-SRSM-RFQ-G-24-62, issued on February 2, 2024, please be informed that the Purchaser hereby issues the Clarifications no.1 to the RFQ as follows:

Reference	Question	Answer
Section in the	Question	AllSwei
RFQ		
RFQ- Table-	Q1:	A1:
Supply of	Under items 1 and 5 in the table	This sensor provides data on the time
Tracking and	"Supply of Tracking and Monitoring	and location of every fuel cap opening.
Monitoring	Devices for Electro and Diesel	This information is useful because in
Devices for	Locomotives/Description of Goods,"	case of fuel spillage with a low-flow
Electro and	there is a requirement for	hose, the spillage would not be
Diesel	implementing a fuel tank cap sensor.	detected. With this information, based
Locomotives-	We need further clarification on the	on the opening of the cap, a detailed
Description of	purpose of this sensor and the data it	check is conducted (justification for
Goods- items 1	should send to the central system. Is	opening the tank, location of the
and 5	this sensor functionally necessary for	locomotive, and monitoring of fuel
	the system's operation, or can the	level changes relative to the
	project's functional requirements be	locomotive's operation while the cap is
	met without this sensor, given that	open).
	our solution tracks fuel levels in real	
	time and has an algorithm for	
	detecting leaks and/or fuel spillage?	
	Q2:	A2:
	What are the fuel tank capacities (for	For locomotives of series 644 and 661,
	each type of diesel traction vehicle	the tank capacity is 3500 litres, and for
	intended for installation)?	series 664, it is 4543 litres.
	Q3:	A3:
	What is the voltage of the traction	For all locomotive series, the nominal
	vehicles' batteries?	voltage of the battery banks is 64V.
		voltage of the satisfy sames is of vi
	Q4:	A4:
	Can a review of the traction vehicles	There is an option to organize a review
	be organized for the purpose of	of traction vehicles currently in
	analysing the project task and	workshops for preventive and
	completing the technical solution?	corrective maintenance in Niš and
		Kraljevo, as inspecting these
		locomotives would not affect the work
		process since other locomotives are
		engaged in train traction. To further
		facilitate the preparation of the
		technical solution, we provide technical
		data for the diesel locomotive series
		661, which may be helpful for
		understanding the tender requirements.
		Locomotives of series 644 and 664 are

height. The tank has an irregular shape, and after installation, it is necessary to	very similar to series 661 regardin parameters related to the installation of GPS, probes, and sensors on fuel caps A detailed drawing of the tank does no exist. In principle, the important factor for probe installation are its volume an	
	height. The tank has an irregular shape,	

Please inform us, upon receipt that you received this Clarifications no. 1 to the RFQ.

Sincerely,

pehouschan

Zorica Petrović Procurement Specialist

8. Regulator opterecenja upotrebljen je da zaštiti dizel-motor od preopterećenja ili nedovoljnog opterećenja i time omogući ujedna-čenu snagu u svakom položaju ručice za režim rada motora.

9. Kompresor sabija vazduh pod pritiskom u rezervoare, koji se tada koristi prvenstveno za vazdušne kočnice, kojima rukuje mašinovođa preko pogonskog mehanizma u upravljačnici. 10. Izuzev ručnog okretanja komandi u upravljačnici, rukovanje

lokomotivom potpuno je automatsko. Razne naprave za uzbunu i sigurnost upozoriće mašinovođu ako dođe do ma kakve poteškoće.

Tehnički podaci lokomotive serije 661

Proizvođač Oznaka modela proizvođača	General Motors Co G-16
Maksimalna snaga za vúču iz di-	
zel-motora	1342 kW (1800 KS)
Maksimalna snaga dizel-motora	1454 kW (1950 KS)
Maksimalna snaga dizel-motora na	
probnom stolu	1640 kW (2200 KS)
Minimalna trajna brzina	17,4 km/h
Maksimalna brzina	124 km/h
Model dizel-motora:	e sedd, za dreidan pogu
kod podserije 661-000, 661-100 kod podserije 661-200, 661-300 i	16-567 C
400	16-567 E
Broj cilindara	16
Tip motora	"V", 45° između osa cilindra
Prečnik cilindra	216 mm (8,5")
Hod klipa	254 mm (10'')
Stepen kompresije	16:1
Ukupna zapremina cilindra	148,841 (9072 cola ³)
Maksimalni broj obrtaja	835 o/min
Broj obrtaja pri praznom hodu	275 o/min
Broj obrtaja dizel-motora neophodan za pokretanje	75—100 o/min
Kompresor	i c

tip	WBO
broj cilindra	3
hlađenje	vodeno

Kapacitet	-78 ₅₂
pri 275 o/min	2,18 m ³ /min
pri 835 o/min	
Glavni generator za jednosm	· ·
struju, model	
(D 22 L kod 661-000 i 100, D	
661-200, 300, 400)	
Ostvarena snaga generatora D	
pri nominalnom naponu	
Nominalni napon	600 V
Trajna maksimalna struja	2400 A
Pomoćni generator za jednos	mernu
struju, model	
Snaga	18 KW
Radni napon	74 V
Kapacitet akumulatorske bate	rije 200 Ah
Napon baterije	64 V
Dva obrtna postolja sa po tri e motora	elektro-
Tip elektromotora kod 661-000 i	661-100 D 47 B ¹
— konstruktivna snaga	427 KW
Tip elektromotora kod 661-20	
-300 i 400	
— konstruktivna snaga	
Ostvarena snaga u vuči (max)	212 KW
Približne mase	
Lokomotiva u službi (potpuno	nami-
rena)	
661-000	
661-100	
661-200	
661-300	
661-400	
Osovinska masa lokomo	
661-000	18 t/os.

Napomena: Posle eventualnog premotavanja, generator se preraduje u tip D32, a vučni motor u tip D77.

20

21

661-100		18,6 t/os.
661-200		19 t/os.
661-300	·	18,6 t/os.
661-400		18 t/os.

Sanduk lokomotive

661-000 661-100, 200, 300, 400	28 000 kg 29 700 kg
Obrtna postolja — 2 kom. (sa osovi- nama ali bez vučnih motora)	27 442 kg
Glavni generator	7025 kg
Vučni motori D 47 bez zupčanika 6 komada	16 050 kg

Generator pare

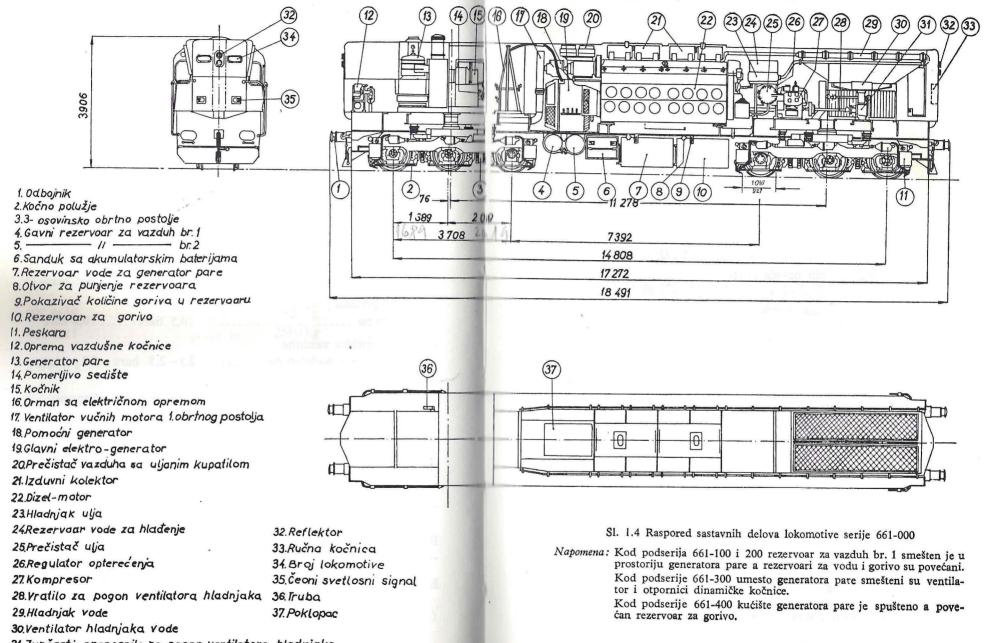
OK 4616	1920 kg	
OK 4625		2500 kg

Zalihe

Ulje za podmazivanje	757 l
Voda za hlađenje	795 l
Voda za generator pare	
kod 661-000	3028 <i>l</i>
661-100 i 200	5035 l

Gorivo

Kod lo	k. 661-000		3028 <i>l</i>
	661-100	i 200	3400 l
	661-300	i 400	6046 l


Pesak 545 kg-0,34 m³ (12 kub. st.)

Tehnički podaci generatora pare:

Generator pare – tip Kapacitet generatora Radni pritisak pare	OK 4616 OK 4625 765 kg/h 1240 kg/h 5 bara 5 bara
Sigurnosni ventili za paru – podešeni da otvore pri	8,4 i 8,7 bara 8,4 i 8,7 bara
Potrošnja goriva — puno opterećenje	76 l/h 110 l/h
Radni pritisak vode	
 pri najmanjem i najvećem optere- ćenju 	16—24,5 bara .16—24,5 bara
Sigurnosni ventil za vodu	38,5 bara 38,5 bara
– podešen da otvori pri	38,3 Dara 38,3 Dara
Regulator pritiska goriva – podešen na	10,5 bara 10,5 bara
Regulator pritiska vazduha — za raspršivanje podešen na	2,1-2,5 bara2,8-3 bara
Kontrola pregrejanosti pare — stupa u dejstvo pri — preporučena podešenost za	226 °C 226 °C
Evropu	232 °C 232 °C
Kontrola temperature izduvnih gasova	· .
— visoka temperatura prekidač otvara — niska temperatura	482 °C 482 °C
prekidač zatvara	149 °C 149 °C
Relej gašenja — vreme zadržavanja	43-47 s 43-47 s
	······································
Broj obrtaja motor-pretvarača pri maksimalnom opterećenju	1750-1800 1750-1800 o/min o/min

22

23

31. Zupčasti prenosnik za pogon ventilatora hladnjaka

Broj obrtaja ventilatora pri maksi-

malnom opterećenju	2750-2800 o/min	2500-2550 o/min
Broj obrtaja troklipne pumpe za vodu pri maksimalnom opterećenju	970-995 o/min	940-970º/min
Napon napajanja generatora pare	74 V	74 V
Jačina struje napajanja	30-40 A	45-55 A

Dimenzije

Razmak od čeonog nosača obrtnog postolja do ose stožera	2,997 m
Razmak između osa stožera obrtnih postolja	11,272 m
Razmak između čeonih nosača obrt- nih postolja	17,272 m
Razmak između krajnjih osovina obrtnog postolja	3,70 m
Maksimalna širina lokomotive	2,819 m
Ukupna visina	3,960 m
Prečnik novih točkova	1,016 m
Rukavac valjkastih osovinskih leža- jeva	140×245 mm
Minimalni prečnik krivine koju loko- motiva savlađuje(21° krivine)	83,5 m
Snage elektrodinamičke kočnice lok. 661-300	1425,6 kW

Odeljak 2

NAMENA I OPIS UREĐAJA ZA RUKOVANJE **LOKOMOTIVOM SERIJE 661**

2.1. Komandni sto mašinovođe

Ručice za rukovanje lokomotivom mogu se videti na slici komandnog stola mašinovođe (slike 2.1. i. 2.2.). Postoji pet ručica, i to: selektor-ručica (samo je ima podserija 661-300), ručica za režim rada motora, ručica za promenu smera kretanja, ručica kočnika za automatsku kočnicu i ručica kočnika za direktnu (lokomotivsku) kočnicu.

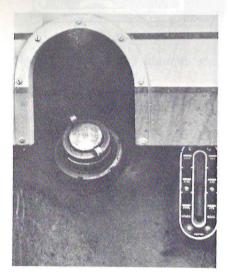
2.2. Selektor-ručica (slika 2.2.)

Selektor-ručica postoji samo kod lokomotive podserije 661-300 pošto ova lokomotiva ima ugrađenu elektrodinamičku kočnicu.

Položaj selektor-ručice određuje da li će lokomotiva odavati vučnu silu ili raditi kao dinamička kočnica, a to se vidi na osvetljenom otvoru na komandnom stolu.

Selektor-ručica ima tri položaja: "B" — za dinamičko kočenje, "OFF" — isključeno,

"l" — za vožniu.


Položaj "B" koristi se za uspostavljanje električnih kola za dinamičko kočenje. Mehanički uređaj u stolu podiže breg na dobošu regulatora da bi isključio radne i uključio kočione prekidače. Ručica za režim rada motora može se tada slobodno pomeriti radi kontrole sile kočenja. ide u brizgaljke. Višak goriva koje brizgaljke ne iskoriste vraća se u rezervoar za gorivo kroz kontrolnu staklenu čašicu postavljenu na kućištu dvostrukog prečistača. Jedan otvor ograničava tok goriva kroz staklenu kontrolnu čašicu i prouzrokuje mali kontrapritisak goriva na brizgaljki. Održavanjem ovog kontrapritiska osigurano je stalno snabdevanje brzigaljki gorivom sve dok pumpa za gorivo radi.

Normalno, pumpa za gorivo daje više goriva dizel-motoru nego što sagori u cilindrima. Višak goriva koji cirkuliše kroz brizgaljke hladi i podmazuje fine radne delove brizgaljki. Zbog toga nikad ne treba dozvoliti da dizel-motor radi bez dovoljnog protoka goriva, vidljivog u kontrolnoj staklenoj cevi.

Sigurnosni ventil ugrađen u kućište dvojnog prečistača na motoru podešen je da otvori i propusti gorivo u drugu kontrolnu staklenu čašicu (koja je normalno uvek prazna) ako se zapuše umeci finih prečistača ispod kontrolnih čašica. Znači, kada je delimično napunjena i druga čašica, dvojni umeci su zapušeni (slika 2.20).

3.17. Punjenje rezervoara gorivom

Rezervoar za gorivo može se puniti s obe strane lokomotive. Jedna kratka staklena cev za kontrolu nivoa goriva postavljena je do svakog otvora za punjenje (slika 3.14. i 3.15). Ova kontrolna cev po-



Slika 3.14 — Kontrola nivoa (napunjenosti) gorivom — otvor sa poklopcem za dodavanje goriva

7

kazuje nivo goriva do oko 11 cm ispod vrha rezervoara i treba je kontrolisati za vreme punjenja da bi se izbeglo prepunjavanje.

Gorivom se ne sme manipulisati u blizini otvorenog plamena.

Slika 3.15 — Rezervoari za gorivo i vodu

D = pokazivač napunjenosti rezervoara; D = otvor sa poklopcem za punjenje gorivom;
 B = pokazivač nivoa goriva; D = otvor sa poklopcem za dodavanje vode u rezervoar generatora pare;
 B = pokazivač napunjenosti vodom za generator pare.

3.18. Pokazivač nivoa goriva

Pokazivač nivoa goriva za celu visinu rezervoara, kao što se vidi na slici 3.15, nalazi se s obe strane prednjeg kraja rezervoara za gorivo. Otvaranjem slavine na dnu pokazivača može se tačno čitati nivo goriva na pokazivaču.

3.19. Pumpa za gorivo

Pumpu za gorivo pokreće jedan poseban elektromotor jednosmerne struje preko elastične spojke. Pumpa je montirana na produžnom nosaču opreme na lokomotivi (slika 3.16.)

96

SISTEM NISKOG NAPONA

Potrebna energija za sistem niskog napona dobija se iz baterije (kada dizel-motor ne radi) ili od pomoćnog generatora (kada dizel--motor radi).

4.1. Baterija

Baterija od 48 ćelije, 64 V, služi za pokretanje (startovanje) dizelmotora. Odeljci za bateriju (baterijski sanduci) smešteni su ispod rama lokomotive, pored rezervoara za gorivo, i to po je lan sa svake strane lokomotive. Svaki odeljak je sa 24 ćelija (slika 4.1.) Za vreme rada dizel-motora pomoćni generator puni baterju i daje potrebnu struju niskog napona.

Slika 4.1 — Akumulatorska baterija (otvoren gornji deo bočnog poklopca)

4.2. Pomoćni generator (slika 4.2)

Pomoćni generator od 18 kW dobija pogon direktno od zadnje zupčaničke razvodne kutije motora preko osovine i elastične spojke. Pomoćni generator proizvodi jednosmernu struju 74 V za punjenje baterije i snabdeva strujna kola niskog napona za osvetljenje, upravljanje, pobudu baterijskog polja glavnog generatora, pumpe za gorivo, grejalice u kabini i generator pare.

Slika 4.2 — Pomoćni generator

4.3. Regulator napona (slika 4.5)

Regulator napona je smešten u levom zadnjem delu električnog odeljka. On održava stalan izlazni napon pomoćnog generatora na približno 74 V bez obzira na broj obrtaja motora.

Regulator napona održava napon pomoćnog generatora regulacijom pobude pomoćnog generatora. Napon pomoćnog generatora teži povećanju, sa povećanjem broja obrtaja motora. Regulator napona tada deluje na smanjenje struje pobude pomoćnog generatora.

4.4. Kontaktori sopstvene (SF) i baterijske (BF) pobude glavnog generatora

Ovi kontaktori su električne naprave koje, kada kroz njih prolazi električna struja, zatvaraju strujne krugove pobude glavnog generatora da bi on proizvodio električnu energiju. Generator neće davati nikakvu snagu ako ovi kontaktori nisu aktivirani.